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Abstract—We analyze the impact of group activities targeting
Social-Emotional Learning (SEL) and peer effects on the risk
and protective factors associated with gang involvement among
youth participating in the Los Angeles Mayor’s Office of Gang
Reduction and Youth Development (GRYD) Prevention program.
We compare the impact of targeted and non-targeted activities
in decreasing Internal Risk, External Risk, and Family Norms
Risk, as measured by a standardized questionnaire. We show that
targeted activities are effective in decreasing Internal Risk and
that activities focusing on Emotional Management are the most
beneficial. Since targeted activities involve group interactions, we
investigate the impact of peer network effects on outcomes using
both a linear-in-means model and dynamic mode decomposition
with control (DMDc). Our analysis suggests that peer network
effects contribute to beneficial changes in risk and protective
factors above and beyond the skill-building content of the
activities.

Index Terms—difference in differences, lasso regression, linear
in means, dynamic mode decomposition with control

I. INTRODUCTION

The City of Los Angeles Mayor’s Office of Gang Reduction
and Youth Development (GRYD) was established in 2008
with a goal of putting into place a comprehensive strategy for
preventing and reducing youth gang involvement and interrupt-
ing gang violence [12], [17]. Within GRYD’s comprehensive
strategy, Prevention Services are focused on identifying at-
risk youth aged 10-15 and providing a program of activities
and services effective in building resilience against the al-
lure of gangs. Youth referred to the program by community
members including faith leaders, teachers, parents, or police,
may agree to complete the Youth Services Eligibility Tool
(YSET) questionnaire. The YSET is designed to measure risk
and protective factors for gang involvement. It includes more
than fifty attitudinal questions, scored on a five-point Likert
scale, in areas related to the risk of gang involvement.1 Risk
scores for individual youth are evaluated using thresholds
established in prior validation studies [6], [7]. Youth who

This research was funded by the City of Los Angeles contract number C-
142037.

1In general, specific risk factors such as impulsive risk taking are the
compliment of protective factors such as self-control. We focus on risk scores
to be consistent with existing literature, but note risk measures can be easily
converted to resilience measures without changing our results.

exhibit risk score above threshold are referred to the Secondary
Prevention program. Youth who score below, but close to the
risk threshold may be referred to the Primary Prevention pro-
gram, which includes only a subset of the services offered by
Secondary Prevention. Secondary Prevention services include
family meetings, individual meetings, and group activities.
After six months of attendance, a YSET retest is administered
to assess progress in the program. If the risk measured at retest
falls below the established thresholds, the youth successfully
“graduates” from the program. If a youth scores above the
threshold upon retest, they may choose to continue in the
program for another cycle of services.

The overall effectiveness of GRYD Prevention program has
already been investigated in [5], [13], [19]. In these studies the
authors used a range of statistical and mathematical models to
establish an association between programming and decreases
in risk scores as measured by the YSET. However, it is not
clear whether the apparent effectiveness of the program comes
from building important life skills or is the result of the proso-
cial opportunities provided by activities [11]. In other words,
does risk appear to decline among program youth because of
the content of the activities or is it simply the social inter-
action that is important? To better understand how activities
help the youth, the Activating Intentional Youth Development
Approach (AIYDA) was first launched in 2018 [11]. AIYDA
activities include content that is explicitly designed to activate
different social-emotional learning (SEL) domains intended
to foster youth critical life-optimizing skills. In this work,
we investigate how AIYDA activities impact risk scores as
measured in the YSET and whether the peer networks created
by AIYDA group activities amplify or mitigate this impact.
Correspondingly, this work is divided into two parts.

In Section II we use difference-in-differences (DID) models
to assess whether AIYDA activities are associated with greater
decreases in YSET scores compared with non-AIYDA activi-
ties. To do this, we group YSET questions into five categories:
Internal Resilience, External Resilience, Strength of Family
Norms, Gang Social Activity, and Peer Gang Involvement.
This grouping was introduced by the GRYD research and
evaluation team in [4]. However, to be consistent with previous

1



work [5], [13], we use a reversed measurement scale compared
to [4]. Therefore, we talk about Internal Risk, External Risk,
Family Norms Risk, Gang Activity Risk, and Peer Gang
Involvement Risk. We find that AIDYA is more effective in
reducing Internal Risk compared with the other categories.
This observation aligns with expectations about what AIYDA
can reasonably influence: Internal Risk is the only category
that is endogenous to the individual, while the other categories
are exogenous, related to family and friends. Furthermore, we
study which of the specific SEL domains have more impact in
reducing Internal Risk by performing a lasso regression, and
find Emotional Management to be the most influential.

In Section III we investigate peer effects. AIYDA services
are group activities, in which individuals interact with each
other. We model each individual as a node in a social network,
where two youths are connected if they interacted in the
same AIYDA activity. It is thus natural to raise the question
of whether the change in an individual’s measured risk is
affected by the change in risk of their peers. There are various
ways to identify peer effects from a social network [2]. In
this report, we study peer effects using (i) a linear-in-means
model [3], and (ii) Dynamic Mode Decomposition (DMD)
[18]. Using the linear-in-means model [3] we show that the
percentage change in an individual’s risk score is positively
correlated with the mean of the percentage change in the
risk score of her neighbors. The YSET score before and after
receiving Secondary Prevention services can also be seen as
a dynamical system, which we approximate using Dynamic
Mode Decomposition [5], [13]. Using the social network
structure to control DMD, we observe that peer effects appear
to influence the dynamics of the system.

II. AIYDA VS. NON-AIYDA

GRYD’s Activating Intentional Youth Development Ap-
proach (AIYDA) seeks to tie specific, actionable behaviors
to more abstract goals in social-emotional learning (SEL)
domains. For example, it may be difficult to envision how
to engage “emotional management”, a key SEL domain, as
part of an activity. However, “self-control”, which is essential
to emotional management, is more easily explained and put
into practice. Here, self-control is a so-called “activator”
tied to emotional management. Each unique AIYDA activity
identifies a single SEL domain and either one or two unique
activators tied to that domain. An AIYDA activity is intention-
ally designed to generate situations where activators are put
into practice to make progress on SEL goals. AIYDA activities
may be contrasted with non-AIYDA activities, which do not
explicitly seek to generate SEL learning opportunities. The
expectation is that AIYDA activities lead to greater reductions
in risk compared to non-AIYDA activities.

A. DID Analysis

In this subsection, we performed a difference-in-differences
analysis AIYDA activities compared to non-AIYDA activities.
We assume that the change in risk among youth engaged in

AIYDA activities would have been the same as youth in non-
AIYDA activities had their received this alternative treatment.
As long as the parallel trend assumption holds, it is possible
to estimate the unique effect of this AIYDA on risk scores
[8], [20]. Our setting consists of two groups and two time
periods. Participants in Secondary Prevention who participated
in both AIYDA and non-AIYDA activities are considered part
of the treatment group. Participants who receive only non-
AIYDA activities are considered to be the comparison group.
Many youth participated in very few AIYDA activities. We
therefore only considered youth with more than ten percent of
AIYDA activities in their combined treatment. After filtering,
the AIYDA group consisted of 940 youth while the non-
AIYDA comparison group consisted of 772 youth. For the
AIYDA group, 50% of the components are males, 49.6% are
females, and 0.4% did not specify their gender. The ethnicity
of the first group are 91% Latino, 8% Black and 1% other.
For the non-AIYDA group, 60% of the components are males
and 40% females. The ethnicity are 75% Latino, 23% Black
and 2% other. For both groups, we consider the intake score
(pre-treatment) and first retest score (post-treatment) as the
two time periods. Mathematically, the regression formula of
DID can be expressed as

Y = β0 + β1G + β2T + β3D + ϵ, (1)

where Y is the sum of the answers on each section of the
YSET questionnaire, G is a group indicator with G = 1
representing the AIYDA treatment group and G = 0 the non-
AIYDA comparison group, T is a time indicator denoting pre-
treatment (T = 0) and the post-treatment measures (T = 1),
and D is defined to be D = G × T, an indicator of treatment
effect. Further, β0, β1, β2, β3 are coefficients and ϵ corre-
sponds to the error term. More specifically, β3 represents the
estimated effect of treatment. A value of β3 that is negative and
statistically significant suggests that participation in AIYDA
activities is associated with a reduction in risk.

We explore different groupings of the scores according to
different risk factors targeted by the GRYD program [4].
We only consider three subgroups: Internal Risk, External
Risk, and Family Norms Risk. Table I shows the estimated
coefficients and p-values for each of three domains considered.
The results suggest that AIYDA activities lead to a decrease
of Internal Risk factors, but not to a decrease of the other
risk factors. Figure 1-3 provide a visualization of the results.
The results are sensible given that individuals presumably have
some control over their own attitudes and behaviors, which
comprise the elements of Internal Risk, but much less control
over the attitudes and behaviors of friends and family, which
comprise the elements of External Risk and Family Norms
Risk.

B. Variable Selection

We apply Lasso regression to study which of the six SEL
domains targeted by AIYDA activities has more influence on
the reduction of risk scores as measured by the YSET.
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Figure 1: The plot shows a significant decrease of the Internal
Risk measure in the AIYDA group. The blue line represents
the Internal Risk measure in the AIYDA group pre and post
treatment (red line). The orange line is the Internal Risk
measure in the non-AIYDA group pre and post treatment.

Figure 2: The plot shows a non significant increase of the
External Risk measure in the AIYDA group. The blue line
represents the External Risk measure in the AIYDA group pre
and post treatment (red line). The orange line is the External
Risk measure in the non-AIYDA group pre and post treatment.

1) Lasso Regression: For data (xi, yi), i = 1, 2, . . . , N ,
and coefficients βj , j = 0, 1, 2, . . . , p, lasso regression is a
modified linear regression model with an l1 penalization term
that minimizes the following optimization problem

Figure 3: The plot shows a non significant increase of the
Family Norms Risk measure in the AIYDA group. The blue
line represents the Family Norm Risk measure in the AIYDA
group pre and post treatment (red line). The orange line is the
Family Norms Risk measure in the non-AIYDA group pre and
post treatment.

argmin
β

{ N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

+ α

p∑
j=1

|βj |
}
. (2)

The added l1 regularization term increases model interpre-
tation by performing variable selection and shrinkages at the
same time [16], and thus allows us to select the most influential
features.

In our model, we regress the counts of individual par-
ticipation in activities targeting different SEL domains xij

against the percent change in Internal Risk between intake
and retest yi. By varying the degree of regularization α,
variable importance can be decided by how fast they shrink to
zero for increasing α (Figure 4). The Problem Solving SEL
domain is the fastest to go to zero, followed by Empathy
and Responsibility, which thus have the least influence on
the percent change in YSET scores. Emotion Management,
Teamwork, and Initiative are slower the go to zero, and
therefore have greater influence over the percent change in
YSET scores.

III. PEER EFFECTS AND NETWORK ANALYSIS

Since AIYDA activities involves groups it is natural to
represent the interactions among individuals in these groups as
a social network [4]. Here we examine how the characteristic
of these networks impact changes in individual risk using
a linear-in-means model and dynamic model decomposition
(DMD).
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Table I: Result of DID on Different Cumulative Scores

Internal Risk Estimate p value
β̂0: Intercept 10.1425 <0.001
β̂1: Group 0.226 <0.001
β̂2: Time -2.5130 <0.001
β̂3: Treatment -0.8424 0.009

External Risk Estimate p value
β̂0: Intercept 7.9171 <0.001
β̂1: Group -0.3086 0.070
β̂2: Time -1.4275 <0.001
β̂3: Treatment 0.1466 0.543

Family Norms Risk Estimate p value
β̂0: Intercept 39.0207 <0.001
β̂1: Group 1.2367 0.046
β̂2: Time -4.9741 <0.001
β̂3: Treatment 0.6401 0.465

Figure 4: The plot shows how the estimated coefficients for
the different SEL domains decrease to zero as the degree of
Lasso penalization is increased. Emotion Management is the
last variable to shrink to zero, suggesting a higher importance
in the linear model.

A. Network Construction

To analyze peer effects, the first task is to construct a
network where nodes are participants and edges represent
peer social interactions. We focus on interactions that hap-
pen during each individual’s first cycle of AIYDA activities
between their intake YSET and first retest. Youth i and j may

share a directed edge if they participated in the same activity.
We use directed edges to define peer relations to capture
the interactions between participation in activities the length
of time youth have been in the GRYD Prevention program.
Specifically, because youth may remain in GRYD Prevention
for multiple six-month cycles, there is a chance that someone
in their first cycle, say youth i, interacts with someone a second
or third cycle, say youth j. From this point of view, youth j
may have a peer effect on youth i’s first cycle outcome, but
the reverse is not possible because youth j already completed
their first cycle before ever encountering youth i. The edge
j → i (i.e. edge pointing from j to i) marks a possible casual
effect. The absence of an edge from i to j indicates that no
such causal effect is possible. Thus, the direction of the arrow
is from a subject’s peers to the subject conditioned on whether
or not a causal effect is possible. The peers of node are defined
by its in-degree.

B. Linear-in-Means

One method to explore peer effects among GRYD partic-
ipants is a regression model called linear-in-means (see, for
instance, [3]). We assume that the risk the score of a participant
may be affected by the mean of the risk scores and mean of
other features of her peers. Assuming E[ϵi |x] = 0 (i.e., the
x are strictly exogenous), the linear-in-means model for each
participant i is formally written as

yi = α+ β⊤xi + γ⊤ 1

di

∑
j∈Ni

xj + δ
1

di

∑
j∈Ni

yj + ϵi, (3)

where

yi =
retest risk score - intake risk score

intake risk score
,

is the percent change in risk score, xi is the vector of
exogenous features including the sources of referrals, and
total number of successfully completed activities and general
demographic information.

The number di is the in-degree of node i, Ni is the
collection of peer nodes influencing i (i.e., the set of nodes
having an outgoing edges to i),

∑
j∈Ni

1
di
yj is the mean of

percent change in risk among peers,
∑

j∈Ni

1
di
xj is the mean

of certain features among peer nodes, and the error term ϵi
represents unobserved characteristics associated with i. The
vector β⊤ represents the coefficients of exogenous features of
node i and γ⊤ the coefficients of exogenous features of peers
of i, while δ represents the coefficients of endogenous features
among the peers of i.

Let n be the number of nodes in the graph and m be
the number of features, and assume E[ϵ |x] = 0. Define the
adjacency matrix of the graph such that the entry in row i,
column j is 1 if there is at least one edge pointing from i to
j, and 0 otherwise. We can write the matrix form of the model
as

y = α1+ β⊤X + γ⊤GX + δGy + ϵ, (4)
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where 1 is an n × 1 vector, X is an n × m feature matrix,
G is an n × n matrix obtained by first transposing the
adjacency matrix of the graph and then dividing each row by
the common in-degree, y is an n× 1 vector representing the
percentage change in risk scores. In this case, with the normal
Ordinary Least Square (OLS) method, coefficient estimates of
all variables are biased because 1

di

∑
j∈Ni

yj is endogenous
[9], so we adopt a Two-Stage Least Squares (2SLS) method to
resolve this issue. We observe that I, G, G2, with I being the
identity matrix, are linearly independent, and by Proposition 1
in [3], we conclude that X, GX, G2X can be used as valid
instrument variables to estimate δ. Therefore, α, β⊤ and γ⊤

can all be estimated without bias. The instrument variables
have realistic interpretation in this specific application. For
instance, G2X represents the weighted average characteristics
of second-order neighbors (i.e., neighbors’ neighbors) in the
social network. The output of 2SLS is shown in Table II.

The coefficient δ represents peer effects. It is estimated to
be a positive number, 0.4855, and a p−value of 0.001. The
standard error is relatively large compared with a coefficient of
0.4855. This is expected because less precision for estimation
of coefficients in the instrumental model results from the loss
of information. However, the slope remains above zero within
the confidence interval, suggesting a nontrivial peer effect
has been successfully identified by the linear-in-means model.
Moreover, the also reveals variation in the percent change
in risk with respect to each individuals’ own characteristics
and provides estimation for the exogenous social effects. In
particular, the result shows the percent change in risk tends
to be higher with high initial risk score and being referred to
GRYD Prevention by law enforcement. In terms of exogenous
social effects, the percent change in risk tends to have a higher
value given neighbors with higher initial risk scores.

Figure 5: The plot shows how the individual change in risk
is associated to the mean neighbor change in risk. A negative
value for the change in risk means that the treatment was
effective. In the plot, we identify three different kind of
individuals: (i) top-right quadrant, negative peer effect; (ii)
bottom left quadrant, positive peer effect; and (iii) other points,
resistance.

IV2SLS Regression Results
Dep. Variable: ratio
Model: IV2SLS
Method: Two Stage Least Squares
No. Observations: 679
Df Residuals: 643
Df Model: 35
R-squared: 0.369
Adj. R-squared: 0.334
F-statistic: 8.506
Prob (F-statistic): 2.02e-34
Variables coef std err P> |t|
const 0.1227 0.341 0.719
δ : neighbor percent change 0.4855 0.141 0.001
score intake -0.0286 0.002 0.000
Ethnicity Black -0.0444 0.093 0.632
Ethnicity Latino -0.0387 0.097 0.692
Referral Other 0.0225 0.060 0.709
Referral OtherSchool -0.0182 0.066 0.782
Referral Parent 0.0301 0.050 0.546
Referral Retest -0.0326 0.057 0.566
Referral SchoolCounselor 0.0822 0.057 0.147
Referral YouthWalkin 0.0455 0.044 0.304
Gender male 0.0263 0.052 0.610
Gender female -0.0021 0.051 0.968
Ethnicity Others 0.1462 0.115 0.203
Gender Others -0.1250 0.128 0.331
Referral Law 0.3504 0.104 0.001
Referral Others -0.0373 0.082 0.649
Duration Normalized -0.1460 0.091 0.107
activity count normalized 0.0997 0.113 0.377
G score intake 0.0240 0.006 0.000
G Ethnicity Black -0.1821 0.295 0.538
G Ethnicity Latino -0.2763 0.307 0.368
G Referral Other 0.1293 0.133 0.331
G Referral OtherSchool -0.0329 0.152 0.828
G Referral Parent 0.1027 0.123 0.403
G Referral Retest 0.0144 0.123 0.907
G Referral SchoolCounselor -0.0907 0.135 0.503
G Referral YouthWalkin 0.2201 0.108 0.041
G Gender male 0.0414 0.137 0.762
G Gender female 0.0019 0.136 0.989
G Ethnicity Others -0.3238 0.296 0.274
G Gender Others 0.1674 0.218 0.443
G Referral Law -0.1302 0.200 0.515
G Referral Others 0.0387 0.161 0.810
G Duration Normalized -0.0632 0.135 0.640
G activity count normalized 0.1839 0.161 0.253

Table II: IV2SLS Regression summary statistics. The neigh-
bors’ characteristics includes sources of referral, gender, race-
ethnicity, total number of completed activities and total dura-
tion in the program. The variables with names starting with
G represent the exogenous effects, i.e. the mean of neighbors’
characteristics.

We visualize the strength of peer effects in Figure 5. The
vertical axis is the percent change in risk for each individual
on the YSET between intake and retest, while the horizontal
axis is the mean of the percent change in risk among the
peers of each individual. Accordingly, the slope of linear
model is the peer effect. It is important to acknowledge that
the intercept describes a baseline when for all features, so it
does not necessarily provide informative insights. A positive
percentage change in risk score (points above zero on the
vertical axis) signifies increased risk, while a negative percent
change signifies decreased risk (points below zero on the
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vertical axis).
The first quadrant, on the top right represents negative peer

effects, in which both variables are positive. This implies
that when peers see increasing risk scores, each individual
in this quadrant also sees an increasing risk score. The second
quadrant, on the top left, represents negative resistance. Here
peers see decreasing risk scores, but each individual in this
quadrant sees movement in the opposite direction. The third
quadrant, on the bottom left, represents a positive peer effect;
when peers see decreasing risk scores so does each individual
in this quadrant. The final quadrant, on the bottom right,
represents positive resistance where peers show an increase
in risk while individuals see a decrease. Notably the third
quadrant is the most populous suggesting that there is a strong
positive peer effect overall.

IV. DMD AND DMDC FOR NEWORK EFFECT

In this section, we first use Dynamic Mode Decomposition
(DMD) to examine whether GRYD Prevention Services have
an effect on reducing the participants’ risk score as measured
by the YSET. We then employ Dynamic Mode Decomposition
with control (DMDc) to study peer effects from AIYDA
activities by treating the social network structure as a set of
controls. Before presenting our experimental results, we recall
the theory of DMD [18] and DMDc [14].

A. DMD

We start with the Koopman operator [10], which is an
infinite-dimensional linear operator describing how a nonlinear
dynamical system evolve. With the Koopman operator provid-
ing a reasonable representation to the dynamic system, we
then use DMD as a finite-dimensional approximation of the
infinite-dimensional Koopman operator [15].

1) Koopman Analysis: Consider a discrete-time dynamical
system

zk+1 = F (zk), (5)

where zk is a state variable at time k defined on a smooth
manifold M, and F : M → M is a function representing the
dynamics.

Assume we have observables xk = g(zk) where g : M →
C is a function mapping the state of the dynamics at time k
to a scalar value, which in our case is an observation from the
YSET questionnaire.

The Koopman operator K for discrete-time dynamical sys-
tems is a linear operator that acts on all scalar measurement
functions g so that

Kg(zk) = g(F (zk)) = g(zk+1). (6)

In this way, we transform a state-space representation to a
Koopman representation, trading nonlinear, finite-dimensional
dynamics for linear, infinite-dimensional dynamics. Different
from local linearization, the Koopman operator preserves a
system’s global nonlinear features as mentioned in [1].

Consider the spectral theory for infinite-dimensional vector
spaces, let φj(z) be a Koopman eigenfunction with corre-
sponding eigenvalue λj , we have

Kφj(z) = λjφj(z), (7)

where φj(z) define a set of intrinsic measurement coordinates,
which enable us to approximate them with a linear dynamical
system. Assume the eigenvalues are numbered so that their
magnitude decreases as the index increase. A set of observ-
ables (risk scores in our case) g can be written in terms of
Koopman eigenfunctions

g(z) =

∞∑
j=1

φj(z)vj , (8)

where vj is the coefficients in the expansion. The spectral
representation of the continuous dynamic system follows from

(7) and (8) that

Kg(z) = K
∞∑
j=1

φj(z)vj =

∞∑
j=1

λjφj(z)vj . (9)

Combining with result from (6), future nonlinear observ-
ables xk+1 can be approximated from time k by

xk+1 = Kg(zk) =

∞∑
j=1

Kφj(zk)vj =

∞∑
j=1

λjφj(zk)vj . (10)

Equation (10) allows us to describe the asymptotic behavior
of the system as time goes to infinity. In particular, when
the leading eigenvalue has norm less than one, we have an
exponential decay in time.

Repeating this process until reaching the initial status, we
can then write observables for any time k

xk =

∞∑
j=1

Kkφj(x0)vj =

∞∑
j=1

λk
jφj(x0)vj . (11)

In our problem setting, at each time slot k, we arrange n
individuals and their scores from the YSET into a p×n matrix
Xk

Xk = [x(1)k , · · · , x(n)k ] ∈ Rp×n, , (12)

where x(i)
k is a p × 1 vector indicating the p section scores

of the i-th participant at time k. For us, k = 0 represents the
intake scores and k = 1 represents the retest score.

2) DMD Algorithm and its connection to the Koopman
Operator: In this section we introduce Dynamic Mode De-
composition (DMD) as a way to approximate the infinite
dimensional Koopman operator using a finite attainable data
set.

Suppose at time k there are a total of n participants,
indexed by j : {x(j)

k }mk=0. We arrange the entire ensemble
of participants and their risk scores by defining matrices
X,X ′ ∈ Rp×n as

6



X =

 | | | |
X0 X1 ... Xm−1

| | | |


=

 | | | | | | |
x(1)
0 ... x(n)

0 ... x(1)m−1 ... x(n)
m−1

| | | | | | |

 ,

(13)

X ′ =

 | | | |
X1 X2 ... Xm

| | | |


=

 | | | | | | |
x(1)1 ... x(n)1 ... x(1)

m ... x(n)m

| | | | | | |

 .

(14)

DMD approximates the dynamical system X 7→ X ′ by finding
a matrix A such that X ′ ≈ AX . More precisely, A is defined
as the minimizer of ∥X ′−AX∥2F on the set of p×n, matrices.
Here ∥ · ∥F denotes the Frobenius norm of a matrix. DMD
modes are eigenvectors the matrix A, which can be expressed
as

A = X ′X† (15)

where † denotes the Moore–Penrose pseudoinverse.
In our problem setting, we have only time k = 0 indicating

the intake test and k = 1 representing the retake test. Thus,
our X and X ′ become

X =

 | | |
x(1)0 ... x(n)0

| | |

 , X ′ =

 | | |
x(1)
1 ... x(n)1

| | |

 , (16)

both of which are p× n real matrices.
Let r be the rank of the matrix A, we can write the solution

to this system in terms of the eigenvalues µk eigenvectors ϕk

and coefficients of initial condition bj

xk+1 =

r∑
j=1

ϕjµ
k
j bj . (17)

Matrix A approximates the Koopman operator, and in
particular we have µj ≈ λj , ϕj ≈ φj(x0), and bj ≈ vj .
We can thus rewrite

xk ≈
r∑

j=1

λk
jφj(x0)vj . (18)

In practice, when the state dimension or number of par-
ticipants is large, it is hard for the matrix A to be analyzed
directly. The DMD algorithm, shown in Algorithm 1, provides
a manageable way to avoid the eigendecomposition of A.

Algorithm 1: Dynamic Mode Decomposition (DMD)
1 Input matrices X,X′ ∈ Rp×n, and an integer r > 0
2 Compute the rank-reduced SVD of X = UrΣrV ∗

r

3 Define Ã = U∗
rX

′VrΣ
−1
r

4 Compute the eigendecomposition of Ã, i.e., ÃW = WΛ, the
eigenvalues of A are given by the diagonal entries of Λ

5 Reconstruct the eigendecomposition of A from W and Λ, the
eigenvectors of A (DMD modes) are given by columns of Φ:
Φ = X′VrΣ

−1
r W

B. DMDc for Network Effect

In this section, we use Dynamic Mode Decomposition
with control (DMDc) [14] to analyze peer network effects
on changes in risk. Consider discrete-time dynamic system
sampled every ∆t

xk+1 = Ãxk + B̃uk, (19)

where Ã describes the dynamic of the unforced system. The
operator B̃ characterizes the impact of the input uk on state
xk+1. Similar to our construction in the previous section, we
change the state snapshot matrix into a matrix that has each
columns showing the risk score for each participant. We then
have a mapping from intake scores to retest scores given the
underlying dynamics and peer network structure

X ′ = ÃX + B̃Γ, (20)

where X and X ′ are as in the previous section and Γ is defined
as follows

Γ =

 | | | |
U0 U1 ... Um−1

| | | |


=

 | | | | | | |
u(1)
0 ... u(n)

0 ... u(1)
m−1 ... u(n)

m−1

| | | | | | |

 .

(21)

In our problem setting, the matrix Γ encodes the control
imposed by the peer network structure. Specifically, Γ is the
adjacency matrix of the n participants as our network structure.

Based on the setup, we feed in X and X ′ and solve
for Ã and B̃. In standard DMD, described in the previous
section, the resulting solution for A in system X ′ = AX
does not identify a separate peer network effect. The leading
eigenvalue of A captures features of the whole dynamical
system. In the present case, Ã captures the dynamics of the
system controlling for peer network effects and B̃ captures the
network effects controlling for other underlying dynamics. By
comparing the magnitude of the eigenvalue of A and Ã, we
are able to examine the impact of peer network interactions
on the effectiveness of the program.

C. Experiment Result

We compare the eigenvalues from DMD and DMDc algo-
rithm applied to the data from each GRYD Zone separately.
GRYD Zones are geographic regions within the overall GRYD
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Figure 6: Each of the six plots represents the DMD analysis in a particular GRYD Zone. For each plot, the white squares are
the eigenvalues of the matrix A obtained as the DMD approximation of the treatment dynamics in the given zone, while the
dark dots are the eigenvalues of the matrix Ã obtained as the DMDc approximation of the same dynamics. For each plot, we
see that the magnitude of the eigenvalues of Ã tends to be higher than the ones of A, suggesting therefore a positive network
effect.

program that are serviced by a single contract provider. We re-
strict analyses to Zones that served more than 45 participants,
namely Newton 1, Newton 2, Rampart 1, Rampart 2, Southeast
3, and Olympic. In Newton 1 there were 85 participants, 50%
male, 45% female, and 5% did not specify their gender. In

Newton 2 there were 97 participants, 53% male, 39% female,
and 8% did not specify their gender. In Rampart 1 there
were 67 participants, 54% male, 39% female, and 7% did not
specify their gender. In Rampart 2 there were 52 participants,
54% male, 40% female, and 6% did not specify their gender.
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In Southeast 3 there were 45 participants, 49% male, 49%
female, and 2% did not specify their gender. In Olympic there
were 43 participants, 40% male, 58% female, and 2% did not
specify their gender. We use xk to denote each person where
(xk)i indicates the i-th section score of the k-th person. As
the number of sections is small, we apply full DMD instead of
the reduced version as it is computationally tractable, which
means we directly computed the eigenvalues instead of using
the reduced rank SVD algorithm presented in Algorithm 1.
For the control matrix, we use the adjacency matrix of the
peer network.

Table III: Leading Eigenvalues of DMD for each Zone

Zones DMDc DMD
Newton 1 1.30 0.94
Netwon 2 1.10 0.88
Rampart 1 1.17 0.90
Rampart 2 1.07 0.97
Southeast 3 1.12 0.80
Olympic 1.08 0.77

Table III shows the norms of leading eigenvalue of Ã from
DMDc and A from DMD. Notice that all of the norms of
the leading eigenvalues from the full DMD are less than one,
which indicates that GRYD Prevention drives decreases in
participant risk scores. By contrast, the norms of the leading
eigenvalue from DMDc are consistently larger than those
from full original DMD. One interpretation is that the leading
eigenvalue of Ã captures the effect of activities if there were
no peers. Since the leading eigenvalue of Ã is greater than
the leading eigenvalue of A, this suggests that peer network
effects contribute substantially to the dynamical decrease in
risk scores. In other words, in the absence of peer network
effects risk scores might actually grow, as indicated by a
leading eigenvalue > 1 (Figure 6).

V. CONCLUSIONS

We investigated the effectiveness of intentional youth de-
velopment (AIYDA) activities offered to clients by the Los
Angeles Mayor’s Office of Gang Reudction and Youth De-
velopment (GRYD) Prevention program. Using data from a
services eligibility questionnaire (YSET), a measure of the
risk of youth gang involvement, we studied the relationships
between participation in AIYDA activities and improvements
in YSET scores. Leveraging a difference-in-differences model
(DID), we demonstrated statistically that engaging in AIYDA
activities plays a significant role in improving the youth’s per-
formance in the Internal Risk section compared to non-AIYDA
activities. We further studied the Social Emotional Learning
domains targeted by AIYDA activities, and illustrated that
emotional management tends to be the the most influential in
improving risk scores. In addition, we examined the peer net-
works effects arising from participants’ engagement in group

activities. We utilized a linear-in-means model and showed
that positive peer effects exist. Youth tend to improve their risk
scores in concert with their peers. Finally, we also performed a
dynamic mode decomposition analysis. We demonstrated that
the norm of the leading eigenvalue from DMDc, with the peer
adjacency matrix as control, is consistently larger than the
leading eigenvalue from regular DMD, suggesting that there
is a positive peer network effect on the dynamics of the system.
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[3] Y. Bramoullé, H. Djebbari, and B. Fortin. Identification of peer effects
through social networks. Journal of Econometrics, 150(1):41–55, 2009.

[4] P. J. Brantingham, D. C. Herz, and M. Kraus. Increasing resilience to
prevent association with gangs: Assessing the impact of gryd preven-
tion services. Gang Reduction and Youth Development Research and
Evaluation Research Brief Series, 2022.

[5] M. A. Choi, S. Huang, H. Qi, M. Scialanga, E. McMullen, A. S. Moreno,
Y. Lou, A. L. Bertozzi, and P. J. Brantingham. Combining dynamic
mode decomposition and difference-in-differences in an analysis of at-
risk youth. In 2022 IEEE International Conference on Big Data (Big
Data), pages 4664–4673, 2022.

[6] K. M. Hennigan, K. A. Kolnick, F. Vindel, and C. L. Maxson. Targeting
youth at risk for gang involvement: Validation of a gang risk assessment
to support individualized secondary prevention. Children and Youth
Services Review, 56:86–96, 2015.

[7] K. M. Hennigan, C. L. Maxson, D. C. Sloane, K. A. Kolnick, and
F. Vindel. Identifying high-risk youth for secondary gang prevention.
Journal of Crime and Justice, 37(1):104–128, 2014.

[8] N. Huntington-Klein. The effect: An introduction to research design and
causality. Chapman and Hall/CRC, 2021.

[9] H. H. Kelejian and I. Prucha. A generalized spatial two-stage least
squares procedure for estimating a spatial autoregressive model with
autoregressive disturbances. The Journal of Real Estate Finance and
Economics, 17(1):99–121, 1998.

[10] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic
mode decomposition: data-driven modeling of complex systems. SIAM,
2016.

[11] A. Larson and D. C. Herz. Achieving intentional youth development.
Gang Reduction and Youth Development Research and Evaluation
Research Brief Series, 2020.

[12] OJJDP. OJJDP Comprehensive Gang Model: Planning for implemen-
tation.ce. Institute for Intergovernmental Research, U.S. Department of
Justice., Washington, D.C., 2009.

[13] J. Park, F. Schoenberg, A. Bertozzi, and P. Brantingham. Investigating
clustering and violence interruption in gang-related violent crime data
using spatial–temporal point processes with covariates. Journal of the
American Statistical Association, 116:1–32, 2021.

[14] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decom-
position with control. SIAM Journal on Applied Dynamical Systems,
15(1):142–161, 2016.
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