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Abstract

Metallic Glasses (MGs) are widely used disordered materials. Understanding the
relationship between the local structure and physical properties of MGs is one of
the greatest challenges for both material science and condensed matter physics. In
this work, we utilize Graph Neural Networks (GNNs) to model the atomic graph
structure and study the connection between the structure and the corresponding
local energy barrier, which is believed to govern many critical physical properties
in MGs. One of our key contributions is to propose a novel Symmetrized GNN
(SymGNN) model for predicting the energy barriers, which is invariant under
orthogonal transformations of the structure, e.g., rotations and reflections. Such
invariance is a desired property that standard GNNs like Graph Convolutional
Networks cannot capture. SymGNNs handle the invariance by aggregating over or-
thogonal transformations of the graph structure for representation learning, and an
optimal distribution over all 3D orthogonal transformations O3 is learned to maxi-
mize the benefit of invariance. We demonstrate in our experiments that SymGNN
can significantly improve the energy barrier prediction over other GNNs and non-
graph machine learning models. With such an accurate model, we also apply graph
explanation algorithms to better reveal the structure-property relationship of MGs.
Our GNN framework allows effective prediction of material physical properties
and bolsters material science research through the use of AI models.

1 Introduction

Metallic glasses (MGs) is a unique class of disordered materials that exhibit pronounced local atomic
structures. It has been demonstrated that the complex local structures of MGs have a tremendous
impact on their physical properties. Those properties, including local plastic deformation, glass state
transition, and etc, have broad scientific impact and wide real-world applications. Nonetheless, it
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remains a challenge for material scientists and chemists to unveil the intricate role of local atomic
structure in determining these properties. A typical way is using a descriptor characterizing local
structural features inspired by the underlying physics (e.g., soft spot, free volume, local stress, etc.)
[23, 6, 9, 29]. In contrast, machine learning (ML) approaches were explored to model the relationship
between the local structure and the corresponding physical properties [7]. Since this approach does
not require specific domain knowledge, it can provide a more general framework to identify the
structure-property relationship of different disordered materials.

One route of the ML approach is model the structure-property relationship directly [1]. However,
due to the complexity of the physical properties, it is often challenging to capture the correlation
accurately and only limited explanation can be given. Another more promising route is to study
the structure-property relationship through the energy barrier of the energy landscape. The energy
barrier is a chemical quantity that describes the local roughness of the energy landscape by comparing
the average energy difference around an atom’s local neighbors. It has been shown that the energy
barrier can act as an important intermediate step when predicting the important properties with the
atomic structures as inputs [30, 8, 36]. However, the precise measurement of the energy barrier can be
challenging and involves time-consuming computation. For example, computing the energy barriers
for an MG with 3,000 atoms can take over a month even with a high-performance computing (HPC)
cluster. To overcome the difficulty, we phrase the energy barrier prediction problem as a graph node
regression problem and solve it with Graph Neural Networks (GNN). Under this formalization, atoms
become nodes in a graph, and edges are constructed between nearby nodes. The node features are the
atom types. The edge features are the 3D coordinate vectors of the relative position between two end
nodes. Then the energy barrier prediction problem becomes a regression task on each node.

Using GNNs to predict the energy barrier of MGs is also a non-trivial task. The graph structure is the
critical information for the prediction and is represented with 3D coordinates. The energy barrier
labels should be invariant to orthogonal transformations of the graph coordinates, e.g., rotations or
reflections. However, existing GNNs are not designed to automatically capture such invariance. As
we show in our experiments, commonly used GNNs like GCN perform poorly for energy barrier
prediction. We thus propose the Symmetrized GNN (SymGNN), which captures the invariance by
introducing a symmetrization module to aggregate information from all orthogonal transformations of
the graphs structure. We demonstrate in experiments that SymGNN on the MG dataset outperforms a
variety of widely-used GNNs including GCN [15], EGNN [27], and non-GNN ML models such as a
multi-layer perceptrons (MLPs). We also conduct an ablation study to show that the symmetrization
module is the critical design for improving the performance. Furthermore, we generate explanations
to better understand the relationship between the atomic structure and energy barriers, where we
extend GNNExplainer [35] to fit the regression task and demonstrate our result through a case study.
We summarize our contributions as the following:

1. We formulate the material science problem of MG energy barrier prediction into an ML
problem of node regression on graphs.

2. We propose a novel SymGNN model that is invariant to orthogonal transformations of the
graph and achieves highly accurate energy barrier predictions for MGs.

3. We combine SymGNN with model explanation methods to generate insightful explanations
and benefit scientific discovery.

2 Related work

Various ML methods have been applied to investigate the relationship between the atomic structures
and physical properties in MGs. Previous work includes GNNs that attempt to directly capture their
relationship [1], and XGBoost for modeling the connection between the atomic structure and the
energy barriers [33]. Wang’s work focused on classification of nodes with the highest 5 percent and
lowest 5 percent activation energy. Our work furthers the investigation of [33] by leveraging the
natural graph structure using GNNs to perform an regression with respect to energy barriers and
generating insightful explanations.
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2.1 Graph Neural Networks

Graph Neural Networks (GNNs) are special types of neural networks that are designed specifically to
work on graph data. It leverages the structural information of the graph to make predictions utilizing
a node’s neighbors’ information by the message passing mechanism [15, 12, 32]. In material science,
molecule graphs are naturally constructed by considering the distance between molecules. Specific
GNN architectures have been proposed to perform various tasks by utilizing the natural physical
interaction between each individual molecule [1]. Different GNN structure differs in how the message
from each node is computed and how the messages from different neighbors are aggregated. Among
many GNN variants, Graph Attention Network (GAT) [32] introduces the attention mechanism
into the aggregation to assign different importance to nodes in the same neighborhood and increase
model capacity. Edge Graph Attention Network (EGAT) [14] further adds edge features to the
attention calculation [14]. Other variants of GNNs were introduced to specifically handle the special
characteristics of certain graphs. For example, E(n) Equivariant GNN, Nequip, MACE, Equiformer
were introduced to be equivariant under translation, rotation, reflection, and permutation, meaning
that the network output will undergo the same transformation if one of these transformation is applied
to the network input [27, 16, 4, 3].

2.2 GNN Explanation

Model explainability is crucial for complex modern ML models. It helps users to gain insights into
the model’s prediction. Popular explanation methods include local-approximation-based methods like
LIME [26], and Shapley-Value-based methods SHAP [18]. Specifically for explaining GNNs, a wide
range of explanation methods are proposed to select the most influential edges, nodes, features, and
even subgraphs [35, 19, 37, 39, 17], for the prediction of one node in the sense that the most message
passing happens. GNNExplainer is the pioneering work that achieves this goal by learning edge
masks to maximize the mutual information between perturbed output and the original model output
[35]. These works including GNNExplainer focus on explaining classification problems, whereas
we focus on explaining node regression. To the best of our knowledge, the only work that targets
GNN explanation for regression tasks is [38], but it is very different from ours because it focuses on
graph-level regression, and it does not consider any invariance explanation nor any application to
material science.

3 Preliminaries

3.1 GAT and EGAT

EGAT is a backbone architecture we build up on in this work. As discussed in the related work, GAT
and EGAT extend the basic GNN by realizing a nonuniform contribution from different neighbors
with the attention mechanism. Each EGAT layer employs a multi-head attention calculation for a
node on each of its neighbors and incorporate the edge features in the calculation. After the message
from each node is computed, EGAT first calculates an attention score aij over the edge between
nodes i and j. Then the representation of node i in the l + 1-th layer (hl+1

i ) is constructed as the
attention-weighted average of the neighbor representations from the l-th layer. The formula is shown
as the following with σ represents the non-linear activation function and N (i) represents the set of
neighbors of node i.

hl+1
i = σ(

∑
j∈N (i)

aijh
l
j) (1)

3.2 GNNExplainer

GNNExplainer seeks to explain the graph neural network’s prediction by selecting a edge-induced
subgraph and a subset of node features that plays the most important role in the prediction of one
node. GNNExplainer targets at classification task and achieves this by learning a fractional edge mask
that minimizes the entropy. Mathematically, denote H to be the entropy and GS to be a subgraph,
then the objective can be written as

min
G

EGS∼GH(Y |G = GS , X = XS) (2)
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After learning the edge mask, a threshold filtering is done to select the most important edges.

4 Method

In this section, we present SymGNN for accurately predicting and elucidating the structure-property
relationship of MGs. We first formulate the energy barrier prediction problem as a node regression
problem on graphs in Section 4.1. Then we introduce the theory behind the symmetrization module
in SymGNN for capturing the invariance in Section 4.2. The full SymGNN model is presented in
Section 4.3. Finally, we discuss how we generate explanations to better reveal the connection between
the atomic structure and the energy barrier in Section 4.4.

4.1 Metallic Glasses Energy Barrier Prediction with GNNs

The problem of predicting energy barriers of MGs can be formalized as a node regression problem on
graphs and be solved with GNNs. Under this formulation, atoms become nodes in a graph, and edges
are constructed between nearby nodes. The MG data thus becomes a graph G with n nodes and m
edges. The node features are the atom types, which we represent with Z = {z1, z2, . . . ,zn}. The
edge features are the 3D coordinate vectors of the relative position between two end nodes, which we
represent with X = {x1,x2, . . . ,xm}. The regression task is to predict the energy barrier y of each
node with the graph structure and features as inputs.

4.2 Symmetrization for Invariance

The energy barrier is the average energy needed for a node to hop between the current and nearby
energy subbasins, and it describes the local roughness of the energy landscape. Therefore, it should
be invariant to orthogonal transformations of the 3D coordinates of the graph, for example, rotations
or reflections. However, regular GNNs are not designed to automatically capture such invariance. We
thus propose a symmetrization module to better capture it. We now present the theory behind the
symmetrization module for capturing the invariance of orthogonal transformations. First, recall some
mathematical definitions.
Definition 4.1 (Orthogonal Transformation). A linear function T : Rd → Rd is called an orthogonal
transformation if for all a, b ∈ RD, it satisfies ⟨T (a), T (b)⟩ = ⟨a, b⟩. The set of orthogonal
transformation on RD is denoted as O(D). An orthogonal transformation T that has det(T ) = 1 is
called a rotation, and a non-rotation otherwise. The set of all rotations is denoted as SO(n).
Definition 4.2 (Invariant/Equivariant Function). Given a group G, a G-action, and two G-sets X,Y .
A function f : X → Y is said to be equivariant if g · f(x) = f(g ·x) and invariant if f(x) = f(g ·x).

In our case, as the map we are investigating are a function from R3 → R under the action of O3,
equivariant is not applicable as there is no corresponding group action in the codomain. More
specifically, there are no corresponding notion of rotation or reflection for element in R. Therefore,
the primary goal of our method will be to achieve invariance.

To predict a node label y with graph structure G, edge features X , and node featuresZ, we fit ML
models, e.g., GNNs, for P (Y = y|G,Z,X). However, in this setting, X only represents the 3D
vectors under one particular coordinate. To have the model learn the invariance under orthogonal
transformations of edge features, we reformulate the problem as marginalizing over all orthogonal
transformations of graph positions in Equation 3,

P (Y = y |G,Z,X) =

∫
T∈O(3)

P (Y = y |G,Z,X, T (X))P (T ) dT (3)

In this way, the model will learn the desired invariance by foreseeing different possibilities that can
be exhibited by the graph. To parameterize over all the orthogonal transformations, we adopt the
following theorem by Euler,
Theorem 4.3. (Euler [28]) Define the rotatins around the three cooridinate axes x1, x2, x3 in R3 by

Ox1
(α) =

[
1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

]
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Figure 1: Illustration of the SymGNN framework.

Ox2(β) =

[
cos(β) 0 − sin(β)

0 1 0
sin(β) 0 cos(β)

]

Ox3
(γ) =

[
cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

]
Then any 3D rotation orthogonal matrix T ∈ R3×3 is of the form T = Ox1

(α)Ox2
(β)Ox3

(γ) for
some α, β, γ. These angles are referred as the Euler angles.

Intuitively, this means that any rotation in 3D can be split into a combination of rotations that rotate
only around the x1-axis, x2-axis, and x3-axis. Using slight modification, we can also parameterize
the non-rotations as shown in the following corollary.

Corollary 4.4. Any 3D orthogonal matrix T ∈ R3×3 that is not a rotation has the form T =
−Ox1

(α)Ox2
(β)Ox3

(γ) for some α, β, γ.

Proof. Please refer to Appendix A.1.

Therefore, we can decouple the integral in Equation 3 into two parts, where the first part controls the
rotation, and the second part controls the reflections and any combination of rotations and reflections.
The equation thus become

P (Y = y |G,Z,X) =

∫
α,β,γ

P (Y = y |G,Z,X, Tα,β,γ(X))P (Tα,β,γ) dT

+

∫
α,β,γ

P (Y = y |G,Z,X,−Tα,β,γ(X))P (Tα,β,γ) dT

(4)

where Tα,β,γ = Ox1
(α)Ox2

(β)Ox3
(γ).

4.3 Symmetrized GNN

In this section, we present the full SymGNN model with an illustration shown in Figure 1. SymGNN
consists of two sub-modules, the first is the symmetrization module mentioned above, and the second
is a prediction module that takes the symmetrized representations to perform message passing with
attention and then for node regression.

The symmetrization module learns two distinct distributions over the Euler angles α, β, and γ, where
the first distribution controls the optimal set of rotations that can be applied to the graph and the
second distribution controls the optimal set of non-rotations. As there are infinitely many orthogonal
transformations, we approximate the integration in Equation 4 by sampling α, β, and γ from the
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learned distributions.

P (Y = y |Z,X, G) =

K∑
i=1

P (Y = y |Z,X, G,Ox1
(αi)Ox2

(βi)Ox3
(γi))

+

K∑
j=1

P (Y = y |Z,X, G,−Ox1
(αj)Ox2

(βj)Ox3
(γj))

(5)

In this approximation, SymGNN can learn from a variety of orthogonal transformations of the graph,
Moreover, a distribution of the most effective orthogonal transformation that benefits the energy
barrier prediction can be learned. The exact distribution we learned in our experiments is the von
Mises (Tikhonov) distribution [20].

Taking the invariant representations output from the symmertization module, the second prediction
module performs message passing to predict energy barriers. To model the complexity, we also
compute attention of edge features with decreasing attention heads and skip connections. In contrast
to regular shallow GNNs on homophily graphs, we set the number of layers to four to capture the
physical influence of both close-by and far-away nodes as suggested by material science literature.
As we show in our experiments in Section 5, our design can significantly outperform other baseline
models for predicting energy barriers of MGs.

4.4 Explanation for Structure-Property Relationship

To make the best use the SymGNN model and truly bolster the scientific research of MGs and
disordered materials in general, we generate explanations to better reveal the structure-property
relationship. We pick the GNNExplainer approach as a starting point for selecting a subgraph GS

with important edges. Since GNNExplainer was developed for classification problems, the cross-
entropy-based objective does not generalize to the regression problem of energy barrier prediction.
Therefore, we modify the objective in Equation 2 by replacing entropy mean squared error (MSE) as
below,

min
G

EGS∼GMSE(Y |G = GS , X = XS) (6)

Empirically, we demonstrate that this regression explainer is capable of selecting meaningful edges
that verify the hypothesis by material scientists and bring new insights.

5 Experiments

We conduct experiments on an MG dataset to evaluate SymGNN and compare its performance with
other baseline models. We then perform an ablation study of the symmetrization module. Finally, we
generate and analyze explanations for energy barrier predictions.

5.1 Dataset

In this investigation, we employ molecular dynamics to simulate the behavior of a representative
Cu64Zr36 metallic glass (MG) subjected to shear deformation. The simulated MG system comprises
8000 atoms, generated through the conventional melting-quenching procedure with varied cooling
rates spanning from 1014 to 1010 K/s. To evaluate the influence of system size, we also simulate
small system (i.e., 3000 atoms). To initiate the simulation, the sample is initially melted at 2000K
under zero pressure for 1ns, facilitating the erasure of its initial configuration memory. Temperature
and pressure control are maintained through the isothermal-isobaric (NPT) ensemble, employing a
Nosé-Hoover thermostat [22, 13]. Subsequently, the liquified state is rapidly quenched to 1K, with
cooling rates ranging from 1014 to 1010 K/s. The resulting glassy structure is further relaxed to its
local energy minimum through energy minimization, utilizing the conjugate gradient algorithm. The
interatomic interactions within the system are described using the embedded-atom method (EAM)
potential [21]. To ensure the statistical robustness of our findings, 11 independent metallic glass
samples are generated for each cooling rate. A timestep of 1fs is adopted for all simulations, and
the entire set of simulations is carried out using the LAMMPS package [24]. To obtain the energy
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Table 1: Training and testing scores of the best model on the validation set.

Methods Training Scores Testing Scores

Non Invariant

GCN 0.1322± 0.0060 0.3063± 0.0084
GCN with Edge Features 0.8142± 0.0161 0.5123± 0.0507
E(n) Equivariant GNN 0.4526± 0.0005 0.2588± 0.0077
MLP 0.2569± 0.0096 0.0575± 0.0127
SymGNN w/o symmetrization 0.8736± 0.0007 0.2669± 0.0371

Invariant SymGNN 0.8368± 0.0027 0.7859 ± 0.0056
Non Invariant model + edge length 0.7221± 0.0049 0.7264± 0.0063

barriers of atoms, we employ the activation-relaxation technique nouveau (ARTn) [2, 5] to calculate
the energy barriers within metallic glasses (MGs). Specifically, starting from a local energy minimum
in the landscape, initial perturbations are introduced to a chosen atom and its nearest neighbors. This
perturbation allows exploration along a direction of negative curvature, increasing the likelihood of
locating a saddle point in the energy landscape. The Lanczos algorithm [2] is then applied to guide
the system to the saddle point by following the direction of negative curvature. A force tolerance
of 0.05eV/Å

−2
is chosen to ensure convergence of the saddle points. In accordance with previous

investigations [10, 11, 34], 20 searches for saddle points are conducted for each atom. Consequently,
the ARTn exploration focuses on determining the average energy barrier associated with atoms.
This parameter is recognized as a key factor influencing the propensity for plastic rearrangement in
disordered materials [31, 30].

This simulation is used to construct a dataset consists of nine graphs. Among them, six graphs are
used for training, one graph for validation, and two graphs for testing. Each training/validation graph
has 8,000 nodes and roughly 260,000 edges, and each test graph has 3,000 nodes and roughly 100,000
egdes. The raw dataset is gathered with nodes only, and edges are constructed between two nodes if
their Euclidean distance is smaller than a threshold, which is chosen to be 5Å = 10−10m for better
prediction performance. As suggested by the material scientists, these nine graphs already have a
good coverage of a wide range of MGs.

5.2 Experiment Setting

Baselines: We evaluate our model by comparing the test performance on the MG dataset to a
variety of other ML models including Graph Convolutional Network (GCN) [15], E(n) Equivariant
GNN (EGNN) [27] that are designed to handle equivariant features, and a non-graph based multi-
layer perceptron (MLP) model. As GCN is inherently not designed for rich edge features, we also
implemented a graph convolution type network that can handle edge features. Furthermore, we
perform an ablation study named SymGNN w/o symmetrization where we remove the symmtrization
layer, and in addition we have include a simple baseline in which we use the absolute length of edge
instead of its 3d coordinates as an input edge feature to achieve invariance.

Evaluation: The predicted energy barriers are evaluated by the Pearson product-moment correlation
coefficient against the true values following from previous work in material science literature [1]. We
run each experiment 4 times with different random initializations, we run the experiment four times
with different random initialization. For each experiment, we use the validation set to determine the
best model, and compute the score with the best model on the test set. The final is the mean and
standard deviation of these scores on the test/train set from different runs, and is reported in table 1.

Implementation: We train the 4-layer SymGNN for 20,000 epochs using an Amsgrad optimizer
[25] with a learning rate of 0.0001. For SymGNN, the distribution over the angles α, β, and γ is
parameterized by the von Mises (Tikhonov) distribution [20], which is a wrapped-around normal
distribution on the circle.

5.3 Evaluation Results

We report the results of SymGNN and other baselines in Table 1. It can be seen from the table that
SymGNN outperforms the baselines by a large amount and exhibits a much stronger generalization

7



power. When we remove the symmetrization module, (i.e. SymGNN w/o symmetrization), the
ablated model cannot generalize well. Also we observe that models capable of handling invariance
can lead to much better result compared to the ones that cannot, which again highlights the importance
of symmetrization module in achieving good prediction performance.

For a time comparison with traditional molecular dynamics simulation, our ML-based approach needs
much fewer computation resources and is much more efficient. In traditional physical simulation,
the calculation of the energy barrier for each atom takes around 20 minutes in a supercomputer with
16 parallel threads. Therefore, for a graph that has a similar size to our test graph, the computation
will take 20×3000

60×24 ≈ 41 days. On the other hand, SymGNN only takes around 3.5 hours to train on a
single chip NVIDIA A10G GPU, and the inference time on the test graph is almost negligible.

5.4 Explanation Case Study

Finally we apply the extended version of GNNExplainer to our trained models to select the most
important edges during the prediction of one specific node. First, we perform a global analysis in
which we show all the top-k selected edges, and observe the special properties of edges being selected.
Next, we zoom in the explanation and plot the local version of the explanation, where only the closet
nodes to a given node are considered, and we would like to investigate how frequent will edge being
selected among these closer atoms.

Explanation Visualization We show our visualizations for a randomly sampled node in this graph.
In Figures 2 and 3, all atoms are drawn in their actual 3D coordinates. For the global version of
explanation 2, we visualize the top 50 edges selected by GNNExplainer. For the local version of
explanation 3, we display only the top 10 closet nodes to the node being explained.

Figure 2: Global Version of the Explanation Figure 3: Local Version of the Explanation

From the visualizations, it can be noted that most of the selected edges lie relatively close to the
central node being explained. However, from the global version, we see that edges close to the
central node or far away from the central node may both be selected. Also, as we can see from
the local version of the explanation, only one edge within the top 10 closet edges is selected by
GNNExplainer. These observations confirm the material scientists’ physical intuition that atoms that
are in middle-range of distance to the central atom should play a more important role in determining
its energy barriers.

6 Conclusion and Future Work

In this paper, we study the connection between the local atomic structures of metallic glasses and their
energy barrier of the energy landscape. We formalize this problem as node regression on graphs and
propose Symmetrized GNN (SymGNN) to solve the problem by effectively capturing the invariance
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of orthogonal transformations of the graph. We compare SymGNN with several baseline models
and demonstrate that SymGNN performs the best across all models being evaluated. In addition, we
extend the GNNExplainer for regression tasks and generate explanations to verify the hypothesis
proposed by material scientists and potentially benefit new scientific discoveries.

For the prediction model, we plan to further examine and compared SymGNN with more geometric
deep learning models that can achieve invariance. For the explanation, the future work we plan to
conduct includes more explorations in terms of various across-node statistics in order to achieve
statistically significant and physics informed result. From physical intuitions, the edge that plays an
important role in the prediction should exhibit some unusual behavior. For example, the edge being
selected may have a higher-than-usual length compared to other edges that connect to the same node,
or it may exhibit a more skewed angle compared to the other edges. By evaluating the statistics of
the distance/angle distribution across different nodes, we can better examine the coherence between
physical intuition and the actual selected edges by explainer.
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A Proofs

A.1 Proof of Corollary 4.4

Proof. We know by elementary linear algebra that an orthogonal matrix A ∈ R3×3 satisfies A−1 =
AT . Therefore, the determinant satisfies

det(A)−1 = det(A−1) = det(AT ) = det(A) (7)

This implies that det(A)2 = 1. As A has real entries, det(A) ∈ R. So the only two possibilities for
the determinant is det(A) = ±1. By definition, a non-rotation is thus any orthogonal matrix that has
determinant −1. Let T : R3 → R3 be an arbitrary non-rotation orthogonal transformation. As −T
satisfies det(−T ) = (−1)3 det(T ) = 1, by definition −T ∈ SO(3). By theorem 4.3, there exists
angles α, β, γ so that −T = Ox1

(α)Ox2
(β)Ox3

(γ). Negate it, we obtain the desired angles that
satisfy T = −Ox1

(α)Ox2
(β)Ox3

(γ).
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